

Investigating the Recovery Mechanism of Bifacial PV Modules Affected by Polarization-type Potential-Induced Degradation (PID-p) in the Field

Cecile Molto¹, Dylan. J Colvin¹, Ryan Smith², Peter Hacke³, Fang Li⁴, Govindasamy Tamizhmani⁴, Jaewon Oh⁵, Halima Jahan⁵, Hubert Seigneur¹

¹Florida Solar Energy Center – University of Central Florida, Cocoa, FL, 32922,USA

²Pordis LLC, Austin, TX, 78729, USA

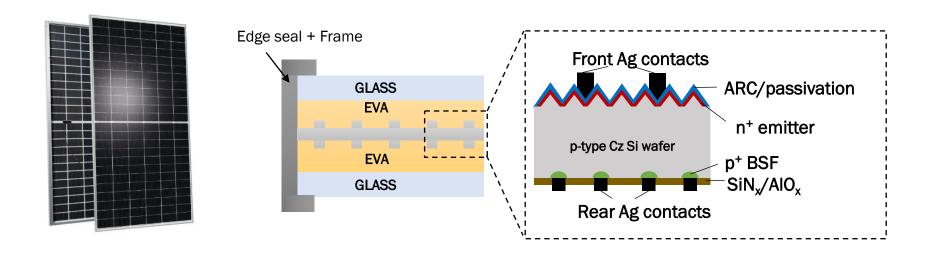
³National Renewable Energy Laboratory, Golden, CO, 80401, USA

⁴Photovoltaic Reliability Laboratory – Arizona State University, Mesa, AZ,85212, USA

⁵University of North Carolina at Charlotte, Charlotte, NC, 28223, USA

Outline

- 1. Motivation
- 2. Background: Bifacial module technology
- 3. Background: Polarization-type Potential-Induced Degradation (PID-p)
- 4. Evidence of PID-p occuring in the field
- 5. Recovery experiments
- 6. Conclusion


1. Motivation

- Confirm whether PID-p is occuring in the field
- Create predictive models for PID-p

Understand PID-p recovery

How we can distinguish PID-p over other degradation mechanisms

2. Bifacial module technology

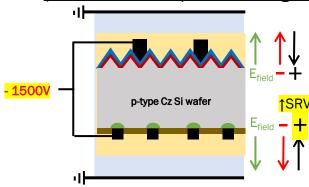
- Commercial Glass/Glass bifacial Passivated Emitter and Rear Cell modules or PERC (from 1 manufacturer)
- Encapsulant: Ethylene Vinyl Acetate (EVA) a flexible, transparent, rubber-like plastic
- Rear passivation layers: SiN_x/AlO_x
- PID-p susceptibility confirmed in chamber (Al foil, dark, 25°C, 54% RH, 168 H) [2], no other PID type detected
 - On the rear side at negative bias
 - On the front side at positive bias

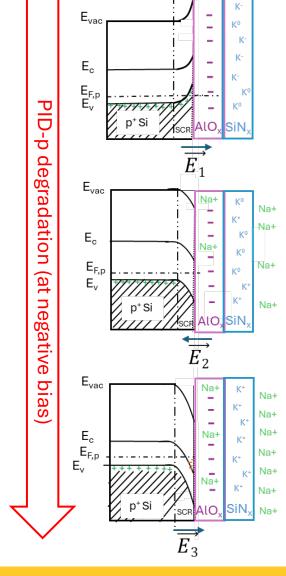
Modules advertised PID free!

3. Polarization-type Potential-Induced Degradation [1]

Potential difference cells/frame

Charges accumulation in passivation stack




Increase surface recombination velocity (SRV)

 \downarrow EL intensity, \downarrow P_{max} (driven by I_{sc})

Negative bias impacts rear side (accumulation of positive charges)

State A: Accumulation (upward band bending)

Majority carriers (holes) accumulation in the SCR creates an Intrinsic electric field $\overrightarrow{E_1}$ repelling minority carriers (electrons) from the Si Surface. Fixed negative charges in the AlO_x also repel electrons.

State B : Depletion (downward band bending)

Depletion of majority carriers (holes) in the SCR. Electric field $\overrightarrow{E_2}$ attracts the minority carriers (electrons) to the Si Surface.

SRV increase

State C : Inversion (downward band bending with E_c crossing $E_{f,p}$)

In the SCR, minority carrier electrons accumulate at the Si interface, restauring an Electric field $\overrightarrow{E_3}$ repelling the minority carriers (electrons) to the Si Surface.

SRV decrease

4. PID-p in the field: Outdoor High-Voltage (HV) testbed

Schematic representation of the HV testbed and pictures of the mounting racks

• Location : Cocoa (Florida)

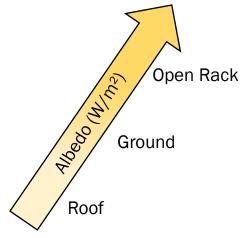
Voltage range : -3500 V to +1500 V

 <u>Sensors</u>: MET station, wetness, thermocouples, Irradiance (POA & albedo), UV (POA & albedo)

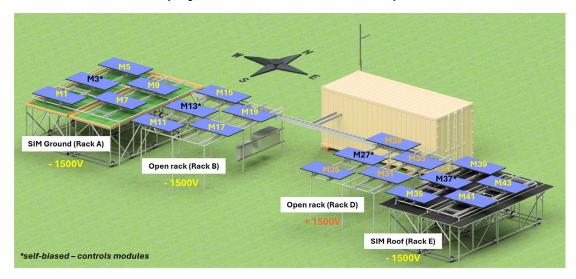
Modules IV traced and LC monitored

• 3 mounting configurations:

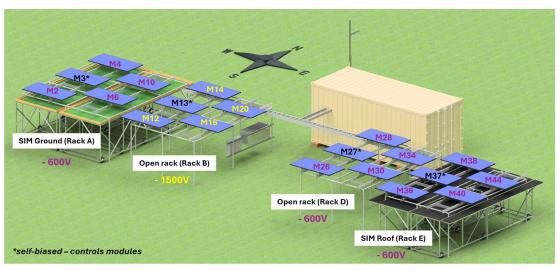
Ground (*1)



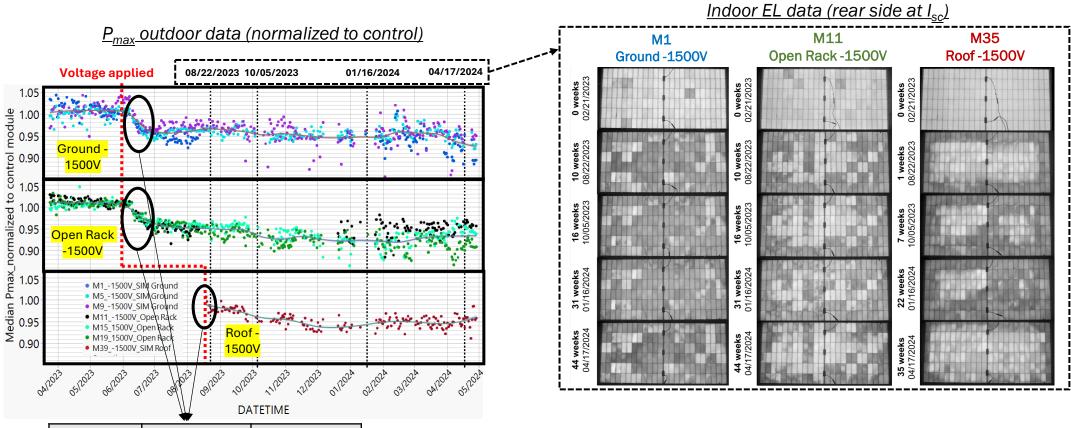
Roof (*1)
Modules close to roofing membrane



UCF


4. PID-p in the field: Experimental plan

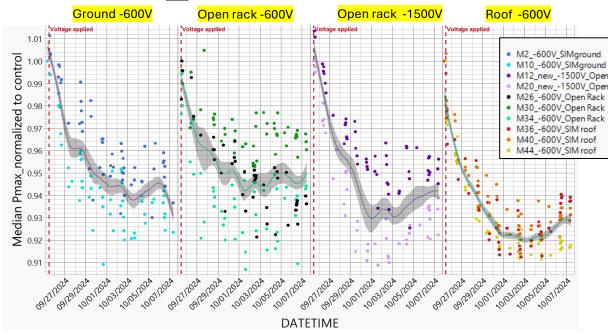
ROUND 1 PID OUTDOOR TESTING (1 year - 20 new modules)


- Assess impact mounting configuration (Rack A, B, E)
- Test PID-p susceptibility at positive bias (Rack D)

ROUND 2 PID OUTDOOR TESTING (3 weeks- 20 new modules)

- Assess impact environmental conditions (Rack B (Open, -1500V) Round 1 vs Round 2)
- Assess impact of voltage magnitude (Rack B vs Rack D)
- Confirm impact of mounting configuration (Rack A, D and E)

4. PID-p in the field: Results Round 1


	Degradation rate (%Pmax loss/day)	Licor Albedo dose (W/m²/day)
ROOF	-7.612 x 10 ⁻¹	26.5
GROUND	-3.252 x 10 ⁻¹	359.1
OPEN RACK	-2.497 x 10 ⁻¹	710.6

- PID-p evidenced at -1500V, no degradation at +1500V
- Fast P_{max} drop (1-2 weeks) up to 5-6% and stabilization
- EL checkerboard pattern : different cells PID-p susceptibility
- Albedo light slower the degradation [3]

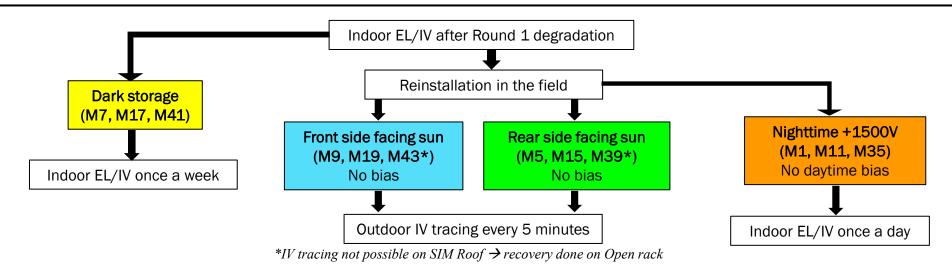
4. PID-p in the field: Results Round 2

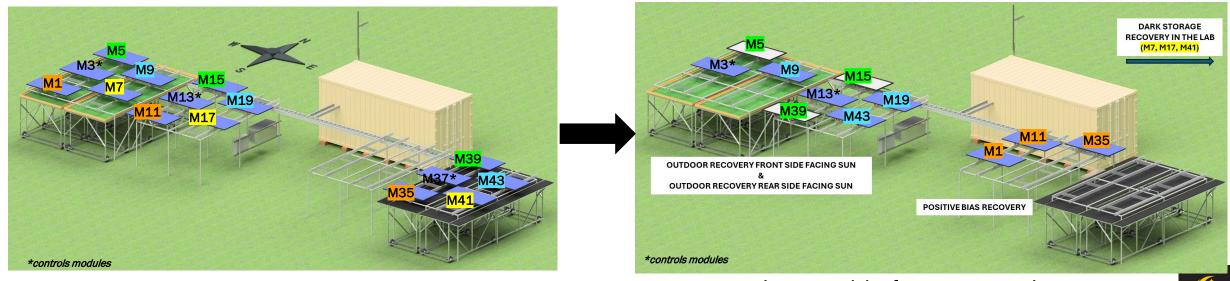
P_{max} outdoor data (normalized to control)

ROUND 2	Degradation rate (%Pmax loss/day)	Licor Albedo dose (W/m²/day)	UV Albedo dose (W/m²/day)
ROOF -600V	-1.296	10.69	0.044
GROUND-600V	-1.270	158.17	0.046
OPEN RACK -600V	-1.019	307.92	0.407
OPEN RACK -1500V	-1.486	307.92	0.407

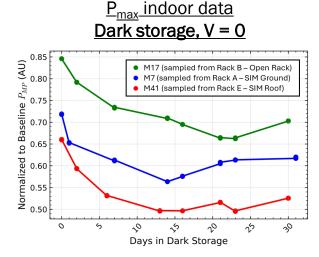
- PID-p evidenced at lower voltage (-600V)
- Light impact confirmed (++ UV component)
- 2.5 x Voltage \rightarrow 1.45 x P_{max} degradation rate

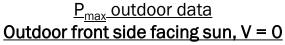
Round 1 Vs Round 2


	Degradation rate (%Pmax loss/day)		UV Albedo dose (W/m²/day)	Mean ambient temp (°C)	Mean RH (%)	% "Wet" reading
OPEN RACK -1500V Round 1	<mark>-0,249</mark>	710.6	0.615	28.16	69.53	64
OPEN RACK -1500V Round 2	<mark>-1.486</mark>	307.92	0.407	28.89	77.95	84
Ratios	6	2.3	1.5	1	1.1	1.3

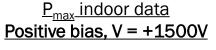

 P_{max} degradation 6 times faster in Round 2: lower irradiance conditions AND more rainy days.

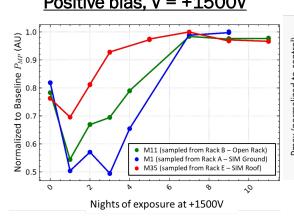
5. Recovery experiments: Experimental plan


Layout modules after Round 1 (-1500V degraded modules only)






5. Recovery experiments: Results

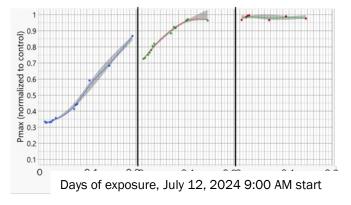

Recovery rate



 $\frac{P_{\text{max}} \text{ outdoor data}}{\text{Outdoor rear side facing sun, V = 0}}$

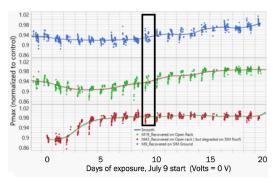
	Dark	Outdoor front side	Nighttime positive	Outdoor rear side
	storage	facing sun	bias	facing sun
Time to full recovery	N/A	10 to 20 days	4 to 8 nights	2 to 7 hours

Common recovery pattern

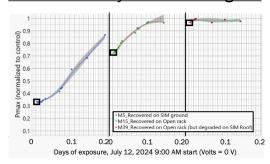

 P_{max} drop \rightarrow Local minimum \rightarrow P_{max} increases until full recovery (except for dark storage)

Recovery rate depends on the method used

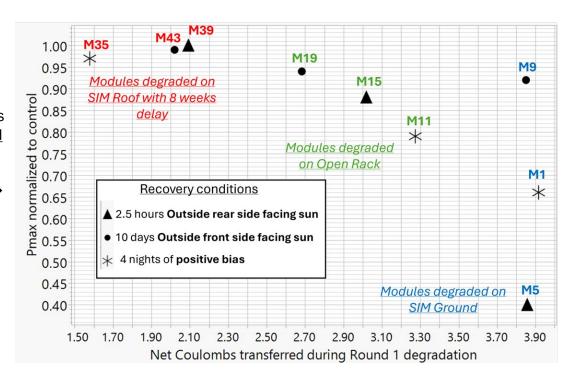
Outdoor rear side facing sun > Positive bias > Outdoor front side facing sun > Dark storage


Recovery rate depends on the degradation history

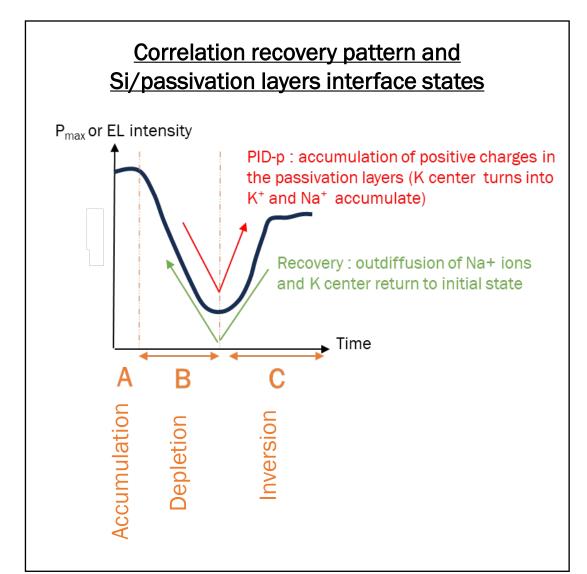
Module degraded on SIM roof > Module degraded on Open rack > Module degraded on SIM Ground

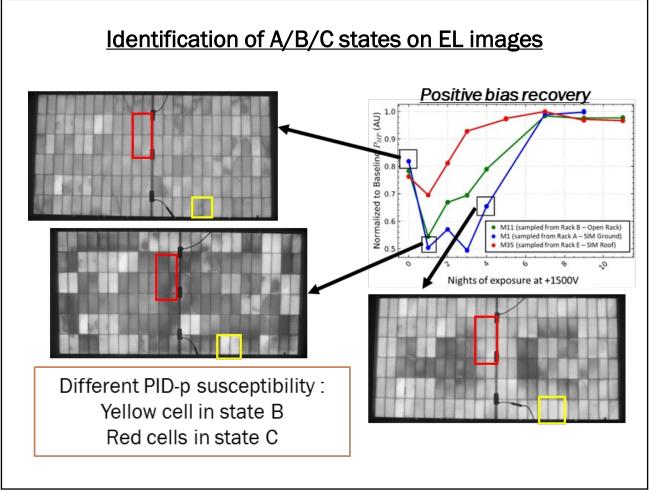


5. Recovery experiments: Results


Outdoor recovery front side facing sun

Outdoor recovery rear side facing sun




 P_{max} after chosen recovery time (such as P_{max} in the increasing phase) plot as a function of <u>Net coulombs transferred during degradation</u>

More coulombs transferred during degradation → greater extend of PID-p → more time needed for full recovery

5. Recovery experiments: Results

6. Conclusions

PID-p degradation:

- PID-p is occuring in the field in bifacial PERC modules for voltages as low as -600V
- Higher degradation rate for :
 - Higher voltages
 - When modules are wet
 - Mounting configuration providing less albedo light
- Different PID-p susceptibility of the cells within a module

PID-p recovery:

- More coulombs transfered during degradation \rightarrow more time needed for full recovery.
- Full recovery under positive bias or illumination
- PID-p recovery pattern → PID-p signature

Thank you for your attention